Diagnosis, Device Placement, and Auxiliary Control for Resilience

N. E. Wu, Q. Qin, M. Salman, and M. Salailoo

ECE Dept., Binghamton University, SUNY

Reliability of power systems: ability to provide uninterrupted service: adequacy (availability) and ability to withstand disturbances: security (transient stability)

20/2015

Motivation and objectives

Protection misoperations

- -Failure to trip, false trip
- -1965 NE, 2003 NE, 2011 SW blackouts
- Challenges

-Rare/high impact events costly to prevent and costly not to prevent

-Response speed required of protection functions

Objective

Introduce a framework that enables us to formally address
 the challenges and examine the technology readiness

- Reliability benefits greatly from diverting all critical faults to state *d*, at which a more expeditious recovery to normal from the degraded state (N-1 secure)
- Assumption: protection is perfect
 - How to quantify the imperfection?

- Introducing security index
 - s: security (conditional probability of successful transition into the degraded state given event of leading to the transition)

d

 $(1-s)\lambda$

γ

Λ

0

 $s_1\lambda_1$

р

 $\bar{\gamma}_1$

SNAN

 d_1

 d_N

 $\overline{s_1\lambda_1} + \cdots + \overline{s_N}\lambda_N$

 $\overline{\lambda}_{I}$

 $\overline{\lambda}_N$

Eva Wu 4

0

Expansibility

C

λ

р

• Modes $\{f_{0}, f_{1}, \cdots, f_{N}, f_{N+1}, \}$

0

- Scalability - linear w.r.t. system size

р

- Evaluation of s_i ?

Modeling misoperations and recovery processes

- Inclusion of insecure states in order to develop auxiliary control
 Pre-fault state is split to include an aggregated false trip state
 Degraded state is split to include an aggregated fault-on state
 - Outage state is split to include an aggregated misoperated state with fault-on
 - Controllable transitions

Security and availability

Control performance

- Security of controllable transitions
 diagnosis performance
 - $s_{ij} = c_{ij} p_{ij}$
 - conditional probability of correct mode identification
 - conditional probability of correct control action)
 - Control and diagnosis risks (Poisson decomposition)
 - Event probability, availability

Summary of computational requirements

- Auxiliary control criterion
 - Estimated post-fault stability region in a physical state space based on the system energy function established by protective control action *u* exerted at time *t*
 - Estimated fault-on physical state at the time *t* that has a probability called a fault-coverage of being in the post-fault stability region.

Characteristic function in product space (x, t)

$$C_{i,u}(t) = \int_{x,t} \overline{J_{i,u}(x,t)}$$

$$f_{(\hat{x},\hat{t}_0)}(t,x,t_0) \quad dx \, dt_0$$

Probability of model matching

Diagnosis criterion

Joint distribution of state, fault onset time

- A conditional probability simplex (conditioned on knowledge of the protective control action *u*) in an N+1 dimensional information space
- Estimated information state, representing system mode probability distribution at time *t*

$$p_{f_i}(t_k) = \frac{p_{f_i}(t_{k-1})\rho_{\xi_{f_i}}(t_k)}{\sum_j p_{f_j}(t_{k-1})\rho_{\xi_{f_j}}(t_k)}.$$

2nd National Symposium on Resilient Critical Infrastructure

Eva Wu 7

Example: security profiles of a 9-bus system PMU-based in electromechanical state tracking Input samples at 24 samples/cycle No swing dynamics involved

 $\vee 4$

Load 3

Gen

 (\sim)

Gen 2

Load 1

Bus Voltages

8/20/2015

~

Example: diagnosis using PMUs & multiple model filter banks

Resilience Week

- Computing mode probability
 - Diagnosis to identify which equipment should be removed in the face of protection misoperations
 - A bank of filters are designed for each known state of protection system
 - Use of PMU-like sensors
 - Filters built on electric network dynamics
 - Inputs: estimated generator voltages
 - Outputs: other sensor input samples

Example: diagnosis using PMUs & multiple model filter banks

Resilience Week

- Computing mode probability
 - Diagnosis to identify which equipment should be removed in the face of protection misoperations
 - A bank of filters are designed for each known state of protection system
 - Use of PMU-like sensors

Hybrid simulation for robustness study

Steady-state probability and event probability

Hybrid simulation for robustness study

Steady-state probability and event probability

