

Evolution of Global Crude Oil Dependence: A Weighted-Directed Graph Analysis

Srinath Pinnaka, Rajgopal Yarlagadda, Egemen K. Çetinkaya

Department of Electrical & Computer Engineering Missouri University of Science and Technology

{*sp4h9*, *rywd5*, *cetinkayae*}@*mst.edu*

http://web.mst.edu/~mstconets http://web.mst.edu/~cetinkayae

Evolution of Global Oil Dependence Outline

- Introduction
- Framework
- Dataset
- Results
- Conclusions

Introduction and Motivation What and Why

- Networks increasingly becoming *interdependent*
 - e.g. Internet and power grid
- Interactions are *complex*
 - Internet is complex enough
 - e.g. layers, protocols, domains, planes, *policies*
- Motivation
 - understand and analyze interdependent graphs
 - apply graph theory in an economic context
- Highlight of the work
 - graph-theoretic analysis of crude oil exchange over 17 years

Framework Analysis Method

- Graph-theoretic framework
 - to analyze interdependencies among nodes
- Model interdependencies as directed graphs:
 - unidirectional: $A \rightarrow B$
 - bidirectional: $A \leftrightarrow B$
- Investigate *connectivity* of *weighted graphs*
 - fraction of nodes remain connected after node/link attacks
- Attacks based on graph *centrality metrics*
 - degree, betweenness, closeness, eigenvector, PageRank
 - adaptive: recalculation after each iteration
- Utilize Python NetworkX library

Dataset Global Crude Oil Exchange

- Utilized Atlas dataset by MIT
 - https://atlas.media.mit.edu
- Global petroleum exchange data: from 1995 to 2012
- We utilize data on: 1995, 2000, 2005, 2010, 2012
 - first and last years, as well as increments of 5 years
 - NSRCI abstract shows only for 1995 and 2012
 - due to space constraint
 - more on extended version [YPÇ2015]
- Weight of a link is export or import value in USD \$

Dataset Atlas Data

• [Atlas] https://atlas.media.mit.edu

20 August 2015

Evolution of Global Oil Dependence as a Network

Dataset Graph Properties per Year

Year	Number Nodes (countries)	Number of Links (exchanges)
1995	190	678
2000	191	867
2005	192	1002
2010	194	1080
2012	199	993

• Adaptive attacks based on node and link centralities

• Adaptive attacks based on node and link centralities

• Adaptive attacks based on node and link centralities

• Adaptive attacks based on node and link centralities

• Adaptive attacks based on node and link centralities

- *Improved connectivity* over years
 - it takes more number of nodes/links to partition the network
 - graph size also increased
 - new countries are born
 - new connections are established between countries
- Rankings of countries vary based on graph metrics
 - degree centrality captures better

Conclusions and Future Work Interesting Results and What is Next?

- Evaluated evolution of global petroleum exchange
 1995 through 2012 over 17 years, using graph theory
- Graph size slightly changed over 17 years
 - number of nodes increased ~ 190 \rightarrow 200, 5%
 - number of links increased ~ 680 \rightarrow 1000, 45%
- Connectivity of global network improved
- Future work
 - can we predict energy dependence of a nation?
 - apply framework on other networks
 - improve the resilience of interdependent networks

References and Further Reading

- [PYÇ2015i] Srinath Pinnaka, Rajgopal Yarlagadda, and Egemen K. Çetinkaya, "Evolution of Global Crude Oil Dependence: A Weighted-Directed Graph Analysis", 2nd National Symposium on Resilient Critical Infrastructure, Philadelphia, PA, August 2015.
- [YPÇ2015] Rajgopal Yarlagadda, Srinath Pinnaka, and Egemen K. Çetinkaya, "A Time-Evolving Weighted-Graph Analysis of Global Petroleum Exchange", *IEEE/IFIP USRR*, Munich, October 2015.
- [PYÇ2015ii] Srinath Pinnaka, Rajgopal Yarlagadda, and Egemen K. Çetinkaya, "Modelling Robustness of Critical Infrastructure Networks", *IEEE/IFIP DRCN*, Kansas City, MO, March 2015, pp. 95 – 98.
- [SHÇ+2010] James P.G. Sterbenz, David Hutchison, Egemen K. Çetinkaya, Abdul Jabbar, Justin P. Rohrer, Marcus Schöller, and Paul Smith, "Resilience and Survivability in Communication Networks: Strategies, Principles, and Survey of Disciplines," *Computer Networks*, Vol. 54, No. 8, pp. 1245 – 1265, June 2010.
- [NetworkX] https://networkx.github.io
- [Atlas] https://atlas.media.mit.edu